Intérêt du Sprint Interval Training dans les sports intermittents et les sports collectifs

Auteurs

Mots-clés :

Sprint Interval Training, sports intermittents, entraînement par intervalles, sports collectifs, puissance maximale aérobie

Résumé

Étudiées et développées depuis une vingtaine d'années, les méthodes d’entraînement par répétitions de sprints montrent aujourd’hui leur intérêt pour améliorer plusieurs paramètres cruciaux de la performance. Dans les sports collectifs et intermittents, où la capacité à répéter des sprints est primordiale, utiliser les intensités supramaximales peut s’avérer très efficace. Le Sprint Interval Training peut être utilisé de différentes manières selon le temps disponible et permet ainsi d’optimiser les séances d’entraînement.

Références

Abdelkrim, N. B., Fazaa, S. E. et Ati, J. E. (2007). Time–motion analysis and physiological data of elite under‐19‐year‐old basketball players during competition. British Journal of Sports Medicine, 41(2), 69-75. https://doi.org/10.1136/bjsm.2006.032318

Astorino, T. A., Allen, R. P., Roberson, D. W., Jurancich, M., Lewis, R. et McCarthy, K. (2011). Attenuated RPE and leg pain in response to short-term high-intensity interval training. Physiol Behav, 105, 402-407. https://doi.org/10.1016/j.physbeh.2011.08.040

Astorino, T. A., Allen, R. P., Roberson, D. W. et Jurancich, M. (2012). Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J Strength Cond Res, 26, 138-145. https://doi.org/10.1519/JSC.0b013e318218dd77

Aziz, A. R., Mukherjee, S., Chia, M. Y. et Teh, K. C. (2007). Relationship between measured maximal oxygen uptake and aerobic endurance performance with running repeated sprint ability in young elite soccer players. J. Sports Med. Phys. Fitness, 47, 401-407.

Baena-Raya, A., Soriano-Maldonado, A., Conceição, F., Jiménez-Reyes, P. et Rodríguez-Pérez, M. A. (2020). Association of the vertical and horizontal force-velocity profile and acceleration with change of direction ability in various sports. European Journal of Sport Science, 1-21. https://doi.org/10.1080/17461391.2020.1856934

Bayati, M., Farzad, B., Gharakhanlou, R. et Agha-Alinejad, H. A. (2011). A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble “allout” sprint interval training. J Sports Sci Med, 10, 571-576.

Bishop, D. et Edge, J. (2006). Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur. J. Appl. Physiol., 97, 373-379. https://doi.org/10.1007/s00421-006-0182-0

Bogdanis, G. C., Nevill, M. E., Boobis, L. H. et Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol, 80, 876-884. https://doi.org/10.1152/jappl.1996.80.3.876

Brown, P. I., Hughes, M. G. et Tong, R. J. (2007). Relationship between VO2max and repeated sprint ability using non-motorised treadmill ergometry. J. Sports Med. Phys. Fitness, 47, 186-190.

Buchheit, M. et Laursen, P. B. (2013). High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med, 43, 313-338. https://doi.org/10.1007/s40279-013-0029-x

Burgomaster, K. A., Hughes, S. C., Heigenhauser, G.J., Bradwell, S. N. et Gibala, M. J. (2005). Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol, 9, 1985-1990. https://doi.org/10.1152/japplphysiol.01095.2004

Burgomaster, K. A., Heigenhauser, G. J. et Gibala, M. J. (2006). Effect of shortterm sprint interval training on human skeletal muscle carbohydrate metabolism during exercise and time-trial performance. J Appl Physiol, 100, 2041-2047. https://doi.org/10.1152/japplphysiol.01220.2005

Burgomaster, K. A., Howarth, K. R., Phillips, S. M., Rakobowchuk, M., MacDonald, M. J., McGee, S. L. et Gibala, M. J. (2008). Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol, 586, 151-160. https://doi.org/10.1113/jphysiol.2007.142109

Cooper, S. B., Bandelow, S., Nute, M. L., Dring, K. J., Stannard, R. L., Morris, J. G. et Nevill, M. E. (2016). Sprint-based exercise and cognitive function in adolescents. Prev Med Rep, 4, 155-161. https://doi.org/10.1016/j.pmedr.2016.06.004

Cicioni-Kolsky, D., Lorenzen, C., Williams, M. D. et Kemp, J. G. (2013). Endurance and sprint benefits of high-intensity and supramaximal interval training. Eur J Sport Sci, 13, 304-311. https://doi.org/10.1080/17461391.2011.606844

Demarie, S., Koralsztein, J. P. et Billat, V. (2000). Time limit and time at VO2max' during a continuous and an intermittent run. J Sports Med Phys Fitness, 40(2), 96-102. PMID : 11034428.

Denham, J., Feros, S. A. et O’Brien, B. J. (2015). Four weeks of sprint interval training improves 5-km run performance. J Strength Cond Res, 29, 2137-2141. https://doi.org/10.1080/02640414.2015.1102316

Elliott, A. D., Rajopadhyaya, K., Bentley, D. J., Beltrame, J. F. et Aromataris, E. C. (2015). Interval training versus continuous exercise in patients with coronary artery disease: a meta-analysis. Heart Lung Circ, 24(2), 149-157. https://doi.org/10.1016/j.hlc.2014.09.001

Farzad, B., Gharakhanlou, R., Agha-Alinejad, H., Curby, D. G., Bayati, M., Bahraminejad, M. et Maestu, J. (2011). Physiological and performance changes from the addition of a sprint interval program to wrestling training. J Strength Cond Res, 25, 2392-2399. https://doi.org/10.1519/JSC.0b013e3181fb4a33

Gaitanos, G. C., Williams, C., Boobis, L. H. et Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. J Appl Physiol, 75, 712-719. https://doi.org/10.1152/jappl.1993.75.2.712

García-Hermoso, A., Cerrillo-Urbina, A. J., Herrera-Valenzuela, T., Cristi-Montero, C., Saavedra, J. M. et Martínez-Vizcaíno, V. (2016). Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obes Rev, 17(6), 531-540. https://doi.org/10.1111/obr.12395

Gist, N. H., Fedewa, M. V., Dishman, R. K. et Cureton, K. J. (2014). Sprint interval training effects on aerobic capacity: A systematic review and meta-analysis. Sports Med, 44, 269-279. https://doi.org/10.1007/s40279-013-0115-0

Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med, 35, 757-777. https://doi.org/10.2165/00007256-200535090-00003

Guiraud, T., Nigam, A., Gremeaux, V., Meyer, P., Juneau M. et Bosquet, L. (2012) High-intensity interval training in cardiac rehabilitation. Sports Med, 42(7), 587-605. https://doi.org/10.2165/11631910-000000000-00000

Hazell, T. J., MacPherson, R. K., Gravelle, B. R. et Lemon, P. R. (2010). 10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance. Eur J Appl Physiol, 110, 153-160. https://doi.org/10.1007/s00421-010-1474-y

Helgerud, J., Engen, L. C., Wisløff, U. et Hoff, J. (2001). Aerobic endurance training improves soccer performance. Med. Sci. Sports Exerc., 33, 1925-1931. https://doi.org/10.1097/00005768-200111000-00019

Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R. et Hoff, J. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc, 39(4), 665-671. https://doi.org/10.1249/mss.0b013e3180304570

Issurin, V. B. (2008). Block periodization versus traditional training theory: a review. J. Sports Med. Phys. Fitness, 48, 65-75.

Issurin, V. B. (2010). New horizons for the methodology and physiology of training periodization. Sports Med, 40, 189-206. https://doi.org/10.2165/11319770-000000000-00000

Jakeman, J., Adamson, S. et Babraj, J. (2012). Extremely short duration high-intensity training substantially improves endurance performance in triathletes. Appl Physiol Nutr Metab, 37, 976-981. https://doi.org/10.1139/h2012-083

Koral, J., Oranchuk, D. J., Herrera, R., Millet, G. (2018). Six sessions of Sprint Interval Training improves running performance in trained athletes. Journal of Strength and Conditioning Research, 32(3), 617-623. https://doi.org/10.1519/JSC.0000000000002286

Koral, J., Lloria-Varella, J., Lazaro-Romero, F. et Foschia, C. (2021). Effects of three pre-season training programs on speed, change-of-direction and endurance in recreationally trained soccer players. A pilot study in the field. Frontiers in physiology, 12. https://doi.org/10.3389/fphys.2021.719580

Laursen, P. B. et Jenkins, D. G. (2002). The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med, 32(1), 53-73. https://doi.org/10.2165/00007256-200232010-00003

MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J. et Smith, K. M. (1998). Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84, 2138-2142. https://doi.org/10.1152/jappl.1998.84.6.2138

MacInnis, M. J. et Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity: Training adaptations and the nature of the stimulus. The Journal of Physiology, 595(9), 2915-2930. https://doi.org/10.1113/JP273196

McKenna, M. J., Heigenhauser, G. J., McKelvie, R. S., Obminski, G., MacDougall, J. D. et Jones, N. L. (1997). Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men. J Physiol, 501, 703-716. https://doi.org/10.1111/j.1469-7793.1997.703bm.x

Macpherson, R. E., Hazell, T. J., Oliver, T. D., Paterson, D. H. et Lemon, P. W. (2011). Run sprint interval training improves aerobic performance but not maximal cardiac output. Med Sci Sports Exerc, 43, 115-122. https://doi.org/10.1249/MSS.0b013e3181e5eacd

Mallo, J. et Navarro, E. (2008). Physical load imposed on soccer players during small-sided training games. J. Sports Med. Phys. Fitness, 48, 166-171.

Mercier, D. (2002). Utilisation de la courbe individuelle intensité-durée à des fins d'entraînement. Les Cahiers de l'INSEP, 33, 225-228. https://doi.org/10.3406/insep.2002.1700

Milanović, Z., Sporiš, G. et Weston, M. (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Med, 45, 1469-1481. https://doi.org/10.1007/s40279-015-0365-0

Morin, J.-B. et Samozino, P. (2021). Détente verticale : approche individualisée de l’entraînement basée sur le profil force-vitesse. Réflexions Sport, 27, 22-37. https://www.calameo.com/read/003232740f7dbfd818aa3

Noakes, T. (2007). Lore of running (5e édition). Human Kinetics.

Paavolainen, L., Keijo, H., Ismo, H., Ari, N. et Keikki, R. (1999). Explosive strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol, 86, 1527-1533. https://doi.org/10.1152/jappl.1999.86.5.1527

Padulo, J., Attene, G., Ardigo, L. P., Bragazzi, N. L., Maffulli, N., Zagatto, A. M. et Dello Iacono, A. D. (2016). Can a repeated sprint ability test help clear a previously injured soccer player for fully functional return to activity? A pilot study. Clin J Sport Med, 27, 361-368. https://doi.org/10.1097/JSM.0000000000000368

Parra, J., Cadefau, J., Rodas, G., Amigó, N. et Cussó, R. (2000). The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle. Acta Physiol Scand, 169, 157-165. https://doi.org/10.1046/j.1365-201x.2000.00730.x

Parolin, M. L., Chesley, A., Matsos, M. P., Spriet, L. L., Jones, N. L. et Heigenhauser, G. J. (1999). Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol, 277, E890-E900. https://doi.org/10.1152/ajpendo.1999.277.5.E890

Pattyn, N., Coeckelberghs, E., Buys, R., Cornelissen, V. A. et Vanhees, L. (2014). Aerobic interval training vs. moderate continuous training in coronary artery disease patients: a systematic review and meta-analysis. Sports Med, 44(5), 687-700. https://doi.org/10.1007/s40279-014-0158-x

Rodas, G., Ventura, J. L., Cadefau, J. A. et al. (2000). A short training programme for the rapid improvement of both aerobic and anaerobic metabolism. Eur J Appl Physiol, 82: 480-486. https://doi.org/10.1007/s004210000223

Ross, A. et Leveritt, M. (2001). Long-term metabolic and skeletal muscle adaptations to short-sprint training: Implications for sprint training and tapering. Sports Med, 31, 1063-1082. https://doi.org/10.2165/00007256-200131150-00003

Rowan, A. E., Kueffner, T. E. et Stavrianeas, S. (2012). Short duration high-intensity interval training improves aerobic conditioning of female college soccer players. Int J Ex Sci, 5, 232-238. https://digitalcommons.wku.edu/ijes/vol5/iss3/6/

Taylor, J., Macpherson, T., Spears, I. et Weston, M. (2015). The effects of repeated-sprint training on field-based fitness measures: A metaanalysis of controlled and non-controlled trials. Sports Med, 45, 881-891. https://doi.org/10.1007/s40279-015-0324-9

Talanian, J. L., Galloway, S. D. R., George, J. F., Heigenhauser, G., Bonen, A. et Spriet, L. L. (2007). Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. J Appl Physiol, 102, 1439-1447. https://doi.org/10.1152/japplphysiol.01098.2006

Trump, M. E., Heigenhauser, G. J., Putman, C. T. et Spriet, L. L. (1996). Importance of muscle phosphocreatine during intermittent maximal cycling. J Appl Physiol, 80, 1574-1580. https://doi.org/10.1152/jappl.1996.80.5.1574

Weston, M., Taylor, K. L., Batterham, A. M. et Hopkins, W. G. (2014). Effects of low-volume high-intensity interval training (HIT) on fitness in adults: A meta-analysis of controlled and non-controlled trials. Sports Med, 44, 1005-1017. https://doi.org/10.1007/s40279-014-0180-z

Whyte, L. J., Gill, J. M. et Cathcart, A. J. (2010). Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism, 59(10), 1421-1428. https://doi.org/10.1016/j.metabol.2010.01.002

Willoughby, T., Thomas, M., Schmale, M., Copeland, J., Tom, J. et Hazell, T. (2015). Four weeks of running sprint interval training improves cardiorespiratory fitness in young and middle-aged adults. J Sport Sci, 34(13), 1207-1214. https://doi.org/10.1080/02640414.2015.1102316

Un athlète de profil en plein sprint sur un fond noir avec un effet de fumée.

Téléchargements

Publiée

14-11-2024

Numéro

Rubrique

Sciences du sport

Catégories

Comment citer

Koral, J. (2024). Intérêt du Sprint Interval Training dans les sports intermittents et les sports collectifs. Réflexions Sport, 29, 24-43. https://revue-rs.france.sport/revue/article/view/23